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Abstract

Two types of 2-D nano-scale finite elements, the chemical bond element and the Lennard–Jones element, are formulated based
upon inter-atomic and inter-molecular force fields. A nano-scale finite element method is employed to simulate polymer field

deformation. This numerical procedure includes three steps. First, a polymer field is created by an off-lattice random walk, followed
by a force relaxation process. Then, a finite element mesh is generated for the polymer field. Chemical bonds are modeled by che-
mical bond elements. If the distance between two non-bonded atoms or monomers is shorter than the action range of the Lennard–

Jones attraction (or repulsion), a Lennard–Jones element is inserted between them. Finally, external load and boundary conditions
are applied and polymer chain deformation is simulated step by step. During polymer deformation, failed Lennard–Jones bond
elements are removed and newly formed Lennard–Jones elements are inserted into the polymer field during each loading step. The

process continues until failure occurs. Two examples are presented to demonstrate the process. Stress–strain curves of polymer
fields under unidirectional tensile load are derived. Continuum mechanical properties, such as modulus and polymer strength, are
determined based upon the stress strain curve. Further, throughout the deformation process one observes polymer chain migration,
nano-scale void generation, void coalescence and crack development.
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1. Introduction

Molecular dynamics is perhaps the most popular
method currently employed for nano-scale analysis
[1–9]. It has been employed to calculate polymer [1–3],
nanotube [4–7] and nanotube reinforced polymer [8,9]
modulus and strength. Using molecular dynamics, tem-
perature induced high frequency molecular thermal
vibration and static deformation can be simulated
simultaneously. However, the frequency of molecular
thermal vibration is on a scale of 1015 Hz. Conse-
quently, molecular dynamics simulation can only pro-
vide deformations that occur on the too rapid scale of
pico- or nano-seconds. As a result, the corresponding
strain rate is much higher than found in typical engi-
neering practice.
Monte Carlo simulation is another method that has
been employed to investigate nano-scale polymer defor-
mation [10–12]. The method is based upon statistical
mechanics. Deformation is applied to the material
domain via a series of strain increments accompanied by
a series of Metropolis minimization cycles. Stress is
expressed as a function of both potential energy and
temperature. In practice, each strain increment step
involves up to several hundred Metropolis energy mini-
mization cycles. A typical example was presented by
Chui and Boyce [11]. They simulated the deformation of
amorphous polymers using the Monte-Carlo approach.
Since the convergence of the process was slow, they
could only obtain deformation information within a
brief time scale. Strain rates used in their analyses ran-
ged from 108 to 109/s, rates still similar to molecular
dynamics.
For most engineering applications, material moduli

remain approximately constant within a large tempera-
ture range. This means the high frequency of thermal
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dynamic molecular motion does not affect elastic defor-
mation. Thus, a question arises: is it possible to decou-
ple the elastic response of materials from the high
frequency of thermal dynamical vibration in a mole-
cular computational model?
In 1986, Theodorou and Suter [13] performed a

detailed theoretical study of the contribution of mole-
cular vibration to glassy polypropylene elastic con-
stants. They concluded that only a negligible
contribution to the modulus derives from high fre-
quency molecular thermal vibration. They constructed
an equilibrium atomic field for an amorphous polymer
inside a cube. Each atom was assigned a small initial
displacement based upon an iso-strain assumption.
Because the assigned atomic field was not an equili-
brium field, an energy minimization process was fol-
lowed. Modulus was determined by derivatives of
potential energy with respect to the strain component.
This method saves a huge amount of computational
time compared to either the Molecular Dynamics or the
Monte Carlo approaches; however, it is of limited
practical value: to determine the initial displacement of
the atomic field for material domains of complex shape
and complex load remains a difficult hurdle.
In this paper, a nano-scale finite element model is

developed. First, nano-element stiffness matrices are
formulated. The model is then used to simulate defor-
mation and to calculate the stress–strain curve of the
polymer field. Polymer chain migration and nano-scale
void and crack creation are observed throughout the
deformation of the polymer field.
This new approach allows decoupling of super high

frequency thermal vibration from static molecular dis-
placement in a molecular computational model. The
high strain rate problem, unavoidable with molecular
dynamical simulation, is thus eliminated. It provides
efficiency similar to the method developed by Theo-
dorou and Suter. Yet its usage is not restricted by
material shape and loading complexity.
2. Formulation of two dimensional nano-scale elements

2.1. Atomic force field

The atomic force field is the core of molecular
mechanics. It is derived from potential energy, which
relates to deformation of chemical bonds and to inter-
molecular (e.g. Lennard–Jones) interaction.

2.2. Chemical bonds

The local geometry of chemical bonds of most mate-
rials can be characterized by a bond length r, bend angle
� and dihedral angle � as shown in Fig. 1. Chemical
bond deformation includes bond stretches (the change
of bond length r), bond angle bends (the change of bond
angle �) and dihedral angle torsion (the change of dihe-
dral angle �). Additional terms are sometimes required
to characterize local molecular structures and their
deformations. A detailed discussion can be found in
reference [14]. In a two-dimensional numerical model,
only bond stretches and bond angle bends require dis-
cussion.
The simplest expression for potential energy that

relates to bond stretch is the harmonic function [15–17].
It proposes a linear relationship between bond elonga-
tion (or shortening) and restoration force. The expres-
sion for potential energy is

Vr ¼
1
2 krðr� r0Þ

2
ð1Þ

where r0 is the unstrained distance between two bonded
atoms and kr is bond stiffness. The relationship between
restoration force and bond elongation can be derived as:

Fr ¼
dVr
dr

¼ krðr� r0Þ ð2Þ

An improved expression for potential energy is
‘‘Morse potential’’ [18,19], which can be written as:

Vr ¼ D e�� r�r0ð Þ � 1
� �2

ð3Þ

The relationship between bond elongation and
restoration force can thus also be improved as:

Fr ¼
dVr
dr

¼ �2�De�� r�r0ð Þ e�� r�r0ð Þ � 1
� �� �

ð4Þ

Fig. 2 shows force-displacement curves derived from
Morse potential energy. It is a non-linear curve. Bond
Fig. 1. Geometry of chemical bonds.
Fig. 2. Interactive force between bonded atoms based upon morse

potential.
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stiffness kr is the slope of the curve, which can be
derived by the derivative of the force with respect to
bond length. The restoration force-bond elongation
curve is approximately linear if bond elongation is
small. Similar results can be achieved from both the
harmonic potential energy and the Morse potential
energy only if bond strain is small. As bond strain
enlarges, the Morse potential energy becomes more
accurate. The shape of Morse potential energy was not
originally derived by quantum mechanics, but was later
supported by quantum mechanics.
Harmonic potential energy is commonly taken in

molecular mechanics to describe the angle bend inter-
action between two neighboring chemical bonds. It
provides a linear relationship between restoration
bending moment and bending angle. It is given as

V� ¼
1
2 k� � � �0ð Þ

2
ð5Þ

where �0 is the equilibrium bond angle. The relationship
between bending moment and bending angle can be
written as:

M� ¼ k� � � �0ð Þ ð6Þ

2.3. Intermolecular interaction

Lennard–Jones’ 6–12 function [20] is employed to
describe the interaction between two atoms or mono-
mers that are not chemically bonded. The potential
energy of the Lennard–Jones function is expressed as:

V ¼ 4"
�

r

� �12
�

�

r

� �6� �
ð7Þ

where " denotes the well depth and � the zero-potential
distance between two non-bonded atoms or monomers.
The Lennard–Jones force (attraction or repulsion)
between two non-bonded atoms can be written as:

F ¼
4"

r
�12

�

r

� �12
þ6

�

r

� �6� �
ð8Þ

2.4. Two-dimensional nano-scale finite element model
for polymer fields

Two kinds of nano-scale elements are developed: the
chemical bond element and the Lennard–Jones element.

2.4.1. Chemical bond element
A generic (united-atom) hydrocarbon polymer mole-

cule is formed as shown in Fig. 3. Based upon the nat-
ure of the restoration force and moment, the covalent
bond chain is modeled as a chain of elastic rods con-
nected by elastic joints. Rods support the restoration
force; elastic joints support restoration bending
moments. The chain is divided (by dotted lines) into
chemical bond elements. Each element is composed of
an elastic rod and two elastic joint halves, one on each
of its two ends. The stretching stiffness of the chemical
bond element is determined by the relationship between
restoration force and bond elongation, which is deter-
mined either by Eq. (2) or (4). The bending stiffness of
the elastic joint is equal to the bending stiffness of the
covalent bond, which is determined by Eq. (6).
Chemical bond element nodal forces and displace-

ments are shown in Fig. 4. There are three nodal forces
for each node: Fxi, Fyi,Mi for node i and Fxj, Fyj,Mj for
node j. There are three nodal displacements for each
node: ui, vi, �� for node i and uj, vj, �j for node j.
The nodal force increment and the displacement

increment relationships in each loading step in the
x-direction are:

DFxi ¼ kr Dui � Duj
	 


DFxj ¼ kr �Dui þ Duj
	 
 ð9Þ

where kr is the stretching stiffness. If harmonic potential
energy is used, kr is the stretching stiffness defined in Eq.
(2). If Morse potential energy is used, kr is the slope of
the restoration force vs. the bond elongation curve,
which is shown in Fig. 2.
Assume the bending stiffness of joints i and j are kyi

and kyj, respectively, which are defined in Eq. (6). The
bending stiffness of the half joint at node i equals ‘‘2k�i’’
and the bending stiffness of the half joint at node j

equals ‘‘2k�j’’. Nodal bending moment increments
induced in each loading step is expressed:
Fig. 4. Nodal forces and nodal displacements.
Fig. 3. Chemical bond element.
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DMi ¼ �2�k�i � D�L � D�ið Þ

DMj ¼ 2�k�j � D�j � D�L
	 
 ð10Þ

where �L is further expressed as:

D�L ¼
Dvj � Dvi

L
ð11Þ

where L is the length of the element.
Based upon static equilibrium conditions, nodal force

increments in the y-direction is derived:

DFyi ¼
DMi þ DMj

	 

L

DFyj ¼ �
DMi þ DMj

	 

L

ð12Þ

Combining Eqs. (9)–(12), one derives nodal force and
displacement increment relationships:

DFxi ¼ krDui � krDuj

DFyi¼
2 k�iþk�j
	 

L2

Dviþ
2k�i
L

D�i�
2 k�iþk�j
	 

L2

Dvj þ
2k�j
L

D�j

DMi ¼
2k�i
L

Dvi þ 2k�iD�i �
2k�i
L

Dvj

DFxj ¼ �krDui þ krDuj

DFyj¼�
2 k�iþk�j
	 

L2

Dvi�
2k�i
L

D�iþ
2 k�iþk�j
	 

L2

Dvj�
2k�j
L

D�j

DMj ¼
2k�j
L

Dvi �
2k�j
L

Dvj þ 2k�jD�j ð13Þ

The element stiffness matrix is written as:

K½ �
e
¼

kr 0 0 �kr 0 0

0
2 k�iþk�jð Þ

L 2
2k�i
L 0

� 2k�iþ2k�jð Þ
L 2

2k�j
L

0 2k�i
L 2k�i 0 � 2k�i

L 0
�kr 0 0 kr 0 0

0
�2 k�iþk�jð Þ

L 2
�2k�i
L 0

2 k�iþk�jð Þ
L 2

�2k�j
L

0
2k�j
L 0 0

�2k�j
L 2k�j

2
66666664

3
77777775

ð14Þ

2.4.2. Lennard–Jones bond element
The Lennard–Jones bond is modeled as a non-linear

spring element. Fig. 5 shows the Lennard–Jones force
vs. the distance curve between two non-bonded atoms.
If distance between them is smaller than 1.244 �, the
slope of the curve is positive; if distance between them is
greater than 1.244 �, the slope of the curve is negative.
In order to reflect the actual nature of Lennard Jones
bonds, the slope of the curve should define element stiff-
ness. However, a negative element stiffness may induce
the global stiffness matrix to not be positive definite. In
order to overcome this difficulty, the following approach
is adopted: If the slope of the force-distance curve is
positive, the slope determines the stiffness of the element.
If the slope is negative, the stiffness of the element is
replaced by a small positive perturbation  rather than
the original negative value. Mathematically, the stiffness
of the Lennard Jones element is defined as:

kl�j ¼

dF

dr
¼
4"

r2
156

�

r

� �12
�42

�

r

� �6� �
if

dF

dr
> 0

D if
dF

dr
< 0

8><
>:

ð15Þ

where ‘‘F’’ is the Lennard–Jones force between two non-
bonded atoms, ‘‘r’’ is the distance between two non-bon-
ded atoms and  is a small perturbation term employed
to avoid the singularity of the stiffness matrix.
The replacement of the negative element stiffness with

a small perturbation term might create error in the
numerical calculation. In order to correct error caused
by this replacement, a relaxation process follows each
loading step as shown in Fig. 5. Details of the relaxation
process will be introduced later in this section.
From Fig. 5, one can see that Lennard–Jones interac-

tions decrease rapidly as distance increases in the nega-
tive slope region. Force becomes negligible if distance r is
much greater than zero-potential distance �. The cut-off
distance in the example presented in this paper is 2.5 �.
During the numerical process, distances between non-

bonded atoms are examined at each loading step. If the
distance between them is shorter than the cut-off dis-
tance (2.5 �) of the Lennard–Jones force, a Lennard–
Jones element is formed and inserted between them.
Throughout polymer deformation, failed Lennard–
Jones elements (r>2.5 �) are removed from the system
and newly formed Lennard–Jones elements (r<2.5 �)
are inserted until the polymer field finally fails.

2.5. Loading-relaxation processes

The global stiffness matrix is assembled using a
method similar to a finite element approach.
The chemical bond element is a nonlinear element if

Morse potential energy is adopted. The Lennard–
Jones element is highly non-linear. In addition, a
small perturbation term is used to replace the actual
force-displacement relationship of the Lennard–Jones
Fig. 5. Lennard–Jones force vs. inter-atomic distance.
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bond when the force-distance slope is negative. This
replacement violates the original nature of the Lennard–
Jones bond. These three factors induce error in the
numerical calculation.
In order to correct the error, a loading-relaxation

process is adopted. Assume nodal positions and nodal
forces before the k-th loading step are {Xk�1} and
{Fk�1}. The k-th step loading force is {Fk}. Then, the
k-th step nodal displacement increment {Uk} is solved
from the following process:
Step 1: Solve nodal displacement increment DUkf g

from the following equation:

K½ � DUkf g ¼ DFkf g ð16Þ

Step 2: Calculate nodal positions:

Xkf g ¼ Xk�1f g þ DUkf g ð17Þ

Step 3: Calculate actual loading forces DF0k
� �

. The
incremental axial nodal force (DF0xi and DF0kj) applied to
a chemical bond element (refer to Fig. 4) is calculated
from its force-elongation relationship. If harmonic
potential energy is used, the nodal force is calculated
from Eq. (2); if Morse potential energy is used, the nodal
force is calculated from Eq. (4). Subtracting axial nodal
force before the loading step from the nodal force after
the loading step, one derives the incremental axial nodal
force. The incremental nodal force in the perpendicular
direction (DF0

yi and DF0yj) and the incremental moment
(DF0mi and DF0mj) is calculated from Eq. (13). The nodal
force applied to the Lennard–Jones element is deter-
mined by Eq. (8). Subtracting the nodal force before the
loading step from that after the loading step, one derives
the actual incremental Lennard–Jones interaction. Then,
these incremental nodal forces are assembled into a
incremental global nodal force matrix DF0k

� �

Step 4: Check error.
If DFkf g � DF0

k

� ��� �� < ", DUkf g is accepted and the
loading step ends.
If DFkf g � DF0k

� ��� �� > ", DUkf g is not accepted and a
relaxation process is required. ‘‘"’’ is a small number. It
controls the accuracy of the numerical process.

Step 5: Relaxation process. Let 	Ff g ¼ DFkf g � D F0k
� �

.
Calculate 	Ff g induced nodal displacement matrix 	Uf g.
Add 	Uf g to DUkf g.
Repeat the process from step 2 to step 5 until

DFkf g � DF0
k

� ��� �� < ":

3. Nano-scale element analysis of polymer fields

The numerical procedure includes three steps: poly-
mer field generation, nano-element model establishment
and polymer field deformation simulation.
Fig. 6. Generation of the polymer chain.
Fig. 7. Polymer field before force relaxation and after force relaxation.
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3.1. Generation of the polymer field

A single idealized polymer chain is created by an off-
lattice random walk, as shown in Fig. 6. The starting
monomer is placed randomly inside the polymer field.
Chemical bond lengths are restricted to a range between
Lmin and Lmax, i.e., the second monomer must be located
inside the shaded zone as shown in the left picture of
Fig. 6. Bond angles are randomly selected. The third
monomer is similarly generated. The process continues
and a polymer chain is thus created.
A polymer field is generated through the following

procedure: first, N starting monomers are distributed
randomly within the material domain. Second, more
monomers are added to the system, growing N polymer
chains and generating a random polymer field. The
random polymer field is not an actual polymer yet. It
must be relaxed. Therefore, in the third step, the unba-
lanced force applied to each atom is calculated and a
force relaxation process is then employed to relax the
polymer field. Consequently, an equilibrium atomic field
is generated. Fig. 7 illustrates polymer fields generated
by this procedure. The picture on the left side is an
unrelaxed polymer field produced by a random walk;
the picture on the right side is a polymer field after force
relaxation. Periodical boundary conditions are
employed during both the random walk process and the
relaxation process.
The next step is to examine the internal stress of the

polymer field, which relates to monomer density. If the
density were too high, a polymer field with a compres-
sive pre-stress state would be created. If the density were
too low, a polymer field with a tensile pre-stress state
would be created.
Fig. 8. Determine stress inside polymer field.
Fig. 9. Check stress along the boundary.
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Refer to Fig. 8; the local stress of the polymer field is
derived by the following procedure. An imaginary cut is
made inside the polymer field. All chemical and Len-
nard–Jones bonds that connect the two sides of the
imaginary cut are removed. Before the removal of these
chemical and Lennard–Jones bonds, each atom is in an
equilibrium position. This means the resultant force
applied to each atom equals zero. After the removal of
these chemical and Lennard–Jones bonds, monomers in
the vicinity are no longer in an equilibrium state. In
Fig. 8, the vicinity area is surrounded by a dotted rec-
tangle. The rectangle is divided into two parts by the
imaginary cut. The non-equilibrium force in each part is
calculated. This represents interactions between mono-
mers on both sides of the imaginary cut through the
removed chemical and Lennard–Jones bonds. The
resultant force of these interactions is translated into
traction between both sides. As such, internal stress is
derived.
In the examples presented in this paper, stress states

along the boundaries of polymer field were examined.
Referring to Fig. 9, the polymer field is marked by a
dark boundary. Monomers outside the polymer field are
generated in accordance with periodical boundary con-
ditions. We made imaginary cuts along the four sides of
the polymer field and examined traction on the bound-
ary. Stresses were subsequently calculated. By adjusting
polymer field density, the initial zero-stress state of the
polymer field was obtained.

3.2. Nano-scale element model for the polymer field

Fig. 10 illustrates the finite element model. The poly-
mer chain is modeled as a chemical bond chain. Len-
nard–Jones elements are represented by dotted lines.
They connect nearby hydrocarbon monomers, including
monomers on the same chain and on different chains,
except those chemically bonded. During polymer defor-
mation, failed Lennard–Jones bond elements are
removed and new Lennard-Jones elements are inserted
into the polymer field during each loading step. The
parameters used are similar to those used by Chui and
Boyce [11] as follows:

kr ¼ 2:78 aJ=A
�
2=bond ro ¼ 1:47A

�

k� ¼ 0:498 aJ=Rad:=bond �o ¼ 1:88Rad:

" ¼ 0:585 10�3
	 


aJ=bond � ¼ 3:53A
�

ð18Þ

Notations used in the above equations are the same as
the notations used in Eqs. (1)–(8).

3.3. Stiffness and strength of the polymer field

Polymer field deformations under unidirectional loads
are simulated. Two examples are presented here. Both
polymer fields include 30 polymer chains. Each chain
Fig. 10. Nano-scale element model for polymer field.
Table 1

Sizes of polymer fields
Example

No.
Number of

monomers
Width of

polymer field
Height of

polymer field
1
 588
 71
 64
2
 573
 63
 57
Fig. 11. Boundary conditions in the numerical calculation.
Fig. 12. True stress–true strain curve.
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has approximately 20 monomers. The number of
monomers in each polymer field and the size of each
polymer field are listed in Table 1.
The boundary conditions, shown in Fig. 11, are similar

to boundary conditions used in continuummechanics. In
the x-direction, there are two end zones, defined as zones
‘‘A’’. x-Direction displacements of all monomers in each
zone ‘‘A’’ are coupled. They are forced to move an
equal distance during each loading step. Looking at
Fig. 11, monomers in zone ‘‘A’’ on the right side of the
field would move toward the right and monomers on
the left side of the field would move toward the left.
During each step, an elongation of 0.31 Å is applied.
Totally 50 loading steps are applied to the polymer field.
Fig. 13. Step by step polymer field deformation.
1588 Y. Wang et al. / Composites Science and Technology 63 (2003) 1581–1590



In the y-direction, there is an upper and a lower
boundary zone, defined as zones ‘‘B’’. In order to pre-
vent an edge effect, an iso-displacement condition in the
y-direction is applied to monomers in each ‘‘B’’ zone,
i.e., y-direction displacements for all monomers in each
zone ‘‘B’’ are coupled into one degree of freedom.
Fig. 12 presents true-stress and true-strain curves for

the two polymer fields. Stress is calculated based upon
the assumption that polymer field thickness equals the
unstrained Lennard–Jones bond length. The stress–
strain curve is linear in the small strain regime. The
initial slopes of both curves almost coincide. The initial
moduli for these two polymer fields are 4.91 and 4.74
GPa, respectively. The slopes subsequently decrease.
The strengths of the two polymer fields (the maximum
values of the stress) are 74.7 and 72.8 MPa, respectively.
Both polymer fields fail when strain approximates 3%.
After each loading step, polymer field conformation is

examined in order to explain the failure mechanism.
Fig. 13 shows polymer field conformation for the first
example at critical points corresponding to the stress-
strain curve shown in Fig. 12: specifically, points A, B,
C, D and E. After the 6th loading step, namely point C,
nanoscale-voids begin to develop. After the 14th load-
ing step, namely point D, several voids coalesce. After
the 20th loading step, namely point E, a crack becomes
visible. The polymer field fractures along the crack.
The deformation process and failure mechanism

could be understood as follows. At low strains, where
monomers are in the vicinity of their unstrained posi-
tions, both chemical and Lennard–Jones bonds exhibit
approximate linear force–displacement relationships.
Thus, the whole polymer field would be an approximate
linear system. This would explain the initial linear
stress–strain relationship. With an increase in strain,
distances between polymer chains increase and Len-
nard–Jones attractions decrease. Thus polymer stiffness
decreases. With a continuing decrease in Lennard–Jones
attractions, the polymer field becomes less uniform and
voids emerge. The structure weakens and ultimately the
polymer field fails.
Although no comparison to experiment is possible for

this simplified 2-D polymer field, the potential of the
method to simulate nano-scale deformation has been
demonstrated.
4. Concluding remarks

A nano-scale element approach is developed in this
paper. Two types of two-dimensional nano-scale ele-
ments are formulated: the chemical bond element and
the Lennard-Jones bond element. The deformation of a
simplified 2-D polymer field is simulated in order to
generate a macro-level stress-strain curve based upon
inter-atomic and inter-molecular force fields. When the
deformation of the polymer field is examined step-by-
step, nano-scale void generation, void coalescence and
crack formation are observed. Direct visualization of
the deformation process enables an understanding of
the failure mechanism.
An actual polymer field has a three-dimensional con-

formation. It is impossible to model polymer chain
interlocks and entanglements inside a three-dimensional
polymer field using a two-dimensional model. In order
to quantitatively analyze the stiffness, strength, and
failure mechanism of the polymer field, a three-dimen-
sional nano-scale element model is required. This is
currently under development.
Polymer field initial states are relaxed using a force

relaxation method. Thus, all monomers are in their
equilibrium positions at the initial state. This would
correspond to the zero-stress state of the polymer field
at low temperature. If the temperature were increased,
thermal motion would occur, and monomers would
deviate from their equilibrium positions. As a con-
sequence, polymer modulus and strength might decrease
as temperature increases. By assigning potential energy
to each monomer directly inside an equilibrium polymer
field, one might be able to analyze the influence of tem-
perature on the modulus and strength of the polymer
field using quasi-static analysis. This will be explored in
the future.
The numerical approach developed in this paper

would be valuable not only for polymer fields, but also
for the nano-scale analysis of other materials.
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